پایاننامه کارشناسی ارشد
در رشتهی مهندسی عمران گرایش زلزله
عنوان :
توزیع خسارت لرزه ای در اجزاء ساختمان های فولادی با میراگر ویسکوالاستیک
با فرمت قابل ویرایش word
تعداد صفحات: 135 صفحه
تکه های از متن به عنوان نمونه :
چکیده
وارد آمدن خسارت سازهای با مفهوم رفتار غیر ارتجاعی و درنتیجه انرژی هیسترزیس نزدیکی بسیاری دارند. لذا میتوان گفت که انرژی هیسترزیس در این سطوح، معیاری قابلتوجه جهت طراحی و یا کنترل سازه میتواند باشد. بستگی زیاد انرژی هیسترزیس به خسارت سازهای موجب شده تا این مفهوم و روشهای نوین طراحی سازهای موردتوجه محققان و مهندسان قرار گیرد.
در این پژوهش، ابتدا سه قاب 4، 8 و 12 طبقه فولادی با سیستم قاب خمشی متوسط به روش استاتیکی معادل بر اساس ویرایش اول استاندارد2800 و بهوسیله نرمافزار ETABS(Ver. 9.5.0) طراحیشدهاند، سپس تمام قابها تحت اثر هفت شتابنگاشت حوزه نزدیک و هفت شتابنگاشت حوزه دور بهوسیله نرمافزار PERFORM3D(Ver.5) مورد آنالیز دینامیکی غیرخطی قرارگرفتهاند. هدف از این مطالعه بررسی نحوه توزیع خسارت، انرژی، جابجایی نسبی، جابجایی بام و برش پایه در قابهای موردبررسی است. در ادامه لزوم بهکارگیری روش مقاومسازی جهت کاهش جابجایی نسبی، بر مبنای آییننامه شرح دادهشده است، سپس از میراگرهای ویسکوالاستیک جهت مقاومسازی و کاهش خسارت در قابهای موردبررسی، استفادهشده است.
نتایج بهدستآمده حاکی از آن است که علیرغم توزیع یکنواخت مقاومت در ارتفاع طبقات، نمودارهای توزیع انرژی هیسترزیس و خسارت از این توزیع پیروی نمیکنند و تمرکز انرژی و خسارت در یک یا چندطبقه مشاهده میشود. لذا برای استفاده بهینه از حداکثر ظرفیت سیستم، طراحی سازهها صرفاً بر اساس مقاومت، منطقی به نظر نمیرسد و باید پارامترهای دیگری مانند انرژی هیسترزیس که نقش عمدهای در خسارت اعضای سازه دارند، درروند طراحی لحاظ شود که در این تحقیق از میراگرهای ویسکوالاستیک جهت مقاومسازی استفادهشده است، نتایج نشان میدهد که این نوع از میراگر نقش زیادی در جذب انرژی و کاهش خسارت در ساختمانها دارد. همچنین تأثیر استفاده از میراگرهای ویسکوالاستیک بر کاهش خسارت قابهای با ارتفاع زیاد، بیشتر بوده است و تحت زلزلههای حوزه نزدیک عملکرد خوبی در کاهش خسارت نشان میدهد.
واژههای کلیدی: انرژی هیسترزیس، خسارت، تحلیل دینامیکی، مقاومسازی، میراگر ویسکوالاستیک
فهرست مطالب
فصل 1 مقدمه 1
1-1 مقدمه 2
1-2 ضرورت و اهداف تحقیق 3
1-3 ساختار پایاننامه 4
فصل 2 مروری بر منابع 5
2-1 مقدمه 6
2-2 مفاهیم اولیه انرژی 6
2-2-1 معادلات انرژی در سیستم یک درجه آزادی 7
2-2-2 معادله انرژی مطلق 8
2-2-3 معادله انرژی نسبی 9
2-2-4معادلات انرژی در سیستم چند درجه آزادی با رفتار غیرخطی……………………………..9
2-2-5 تجزیه انرژی ورودی به عبارتهای مختلف انرژی 10
2-2-5-1 انرژی ورودی ) 11
2-2-5-2 انرژی هیسترتیک( ) 11
2-2-5-3 انرژی میرایی لزج یا ویسکوز( ) 12
2-2-5-4 انرژی جنبشی ( ) 12
2-2-5-5انرژی الاستیک( ) 13
2-2-6 تأثیر پارامترهای سازهای بر انرژی ورودی 13
2-2-6-1 تأثیر دوره تناوب سازه 13
2-2-6-2 تأثیر نسبت شکلپذیری و مدل هیسترتیک در انرژی ورودی 14
2-2-6-3 تأثیر نسبت میرایی در انرژی ورودی 14
2-3 شاخصهای خسارت 14
2-3-1 شاخصهای خسارتی بیشینه تغییرشکل 15
2-3-1-1 نسبت شکلپذیری 15
2-3-1-2 تغییر مکان نسبی بین طبقهای 16
2-3-1-3 نسبت خسارت خمشی 16
2-3-2 شاخصهای خسارتی تجمعی 16
2-3-2-1 تغییر شکلهای تجمعی نرمال شده 17
2-3-2-2 انرژی تلفشده تجمعی نرمال شده 17
2-3-2-3 خستگی سیکل کوتاه 17
2-3-3 شاخصهای ترکیبی 18
2-3-3-1 تغییر مکان حداکثر و اتلاف انرژی 18
2-3-3-2 منحنی لنگر – انحنا 19
2-3-4 شاخصهای خسارت بیشینه شکلپذیری 19
2-3-5 میانگین وزنی شاخصهای خسارت 20
2-3-6 تاریخچه شاخص خسارت 20
2-4 کنترلهای لرزهای 24
2-4-1 انواع سیستم های کنترلکننده لرزهای 24
2-4-1-1 سیستم کنترلکننده غیرفعال 25
2-4-1-2 سیستم کنترلکننده فعال 26
2-4-1-3 سیستم کنترلکننده پیوندی 27
2-4-1-4 سیستم کنترلکننده نیمه فعال 28
2-5 میراگرها 28
2-5-1 میراگرهای جرمی تنظیم شده 29
2-5-2 میراگر مایع تنظیم شده 31
2-5-3 میراگر ویسکوز 42
2-5-4 میراگرهای تسلیمی (فلزی) 35
2-5-5 میراگرهای آلیاژ فلزی با تغییرشکل حافظه ای 38
2-5-6 میراگرهای اصطکاکی 40
2-5-7 میراگرهای ویسکوالاستیک 42
2-5-7-1 ساختار مواد ویسکوالاستیک 42
2-5-7-2 مشخصات دینامیکی میراگرهای ویسکوالاستیک 43
2-5-7-3 مدلسازی سازههای دارای میراگر ویسکوالاستیک 46
2-5-7-4 روش انرژی کرنشی مودال 48
2-5-7-5 روش طراحی 49
2-5-7-6 پیشینه کاربردی میراگرهای ویسکوالاستیک 51
فصل 3 معرفی و مدلسازی سازههای موردمطالعه 54
3-1 مقدمه 55
3-2 قابهای موردبررسی در این مطالعه 55
3-3 بارگذاری و طراحی قابها در نرمافزار ETABS ver9.5.0 56
3-4 چگونگی انجام تحلیل دینامیکی غیرخطی 59
3-5 انتخاب شتابنگاشتها 60
3-6 همپایه کردن شتابنگاشتهای انتخابی 61
3-7 خصوصیات نرمافزار Perform 3D 61
3-7-1 المانهای مورداستفاده در نرمافزار Perform 3D 61
3-7-2 گام زمانی در آنالیز غیرخطی نرمافزار Perform 3D 62
3-7-3 تکنیک حل نرمافزار Perform 3D 62
3-7-4 انرژی در نرمافزار Perform 3D 62
3-7-4-1 محاسبه انرژیهای غیر الاستیک و کرنشی 63
3-7-4-2 خطای انرژی 65
3-7-5 فرضیات تحلیل دینامیکی و مدلسازی در نرمافزار Perform3D 65
3-7-6 مدلسازی میراگر ویسکوالاستیک در نرمافزار Perform 3D 65
3-7-7 کنترل صحت مدلسازی میراگر ویسکوالاستیک در نرم افزارPerform 3D 68
فصل 4 نتایج و تفسیر آنها 71
4-1 مقدمه 72
4-2 بررسی نتایج تغییر مکان نسبی طبقات 73
4-2-1 قاب 4 طبقه 73
4-2-2 قاب 8 طبقه 75
4-2-3 قاب 12 طبقه 77
4-2-4 نتایج میانگین تغییر مکان نسبی طبقات در قابها 79
4-3 بررسی نتایج تاریخچه زمانی انرژی ورودی زمینلرزه 81
4-3-1 نتایج تاریخچه زمانی انرژی ورودی زلزله لندرز 81
4-3-1-1 قاب 4 طبقه 81
4-3-1-2 قاب 8 طبقه 83
4-3-1-3 قاب 12 طبقه 83
4-3-2 نتایج تاریخچه زمانی انرژی ورودی زلزله طبس 84
4-3-2-1 قاب 4 طبقه 84
4-3-2-2 قاب 8 طبقه 85
4-3-2-3 قاب 12 طبقه 86
4-4 بررسی انرژی هیسترزیس در سازه 87
4-4-1 قاب 4 طبقه 88
4-4-2 قاب 8 طبقه 89
4-4-3 قاب 12 طبقه 90
4-4-4بررسی میانگین انرژی هیسترزیس وارد بر قابها 91
4-5 بررسی انرژی باقیمانده در سازه 91
4-5-1قاب 4 طبقه 92
4-5-2 قاب 8 طبقه 93
4-5-3 قاب 12 طبقه 94
4-5-4بررسی میانگین انرژی باقیمانده در قابها 95
4-6 بررسی نسبت انرژی هیسترزیس به انرژی ورودی در قابها 95
4-7 بررسی توزیع خسارت در ارتفاع قابهای موردبررسی 96
4-7- قاب 4 طبقه 96
4-7-2 قاب 8 طبقه 98
4-7-3 قاب 12طبقه 100
4-7-4 نتایج میانگین شاخص خسارت طبقات در قابها 102
4-8 بررسی شاخص خسارت کل سازه در قابهای موردبررسی 104
4-9 بررسی برش پایه در سازه 105
4-9-1 قاب 4 طبقه 106
4-9-2 قاب 8 طبقه 107
4-9-3 قاب 12طبقه 108
4-9-4 نتایج میانگین برش پایه قابهای موردبررسی 109
4-10 بررسی جابجایی بام در سازه 110
فصل 5 جمعبندی و پیشنهادها 111
5-1 مقدمه 112
5-2 نتیجهگیری 112
5-3 پیشنهادات 113
مراجع 115
فهرست شکلها
شکل (1-1) خسارت جانی ناشی از زمینلرزههای مهم 3
شکل (2-1) مدل ریاضی حرکت یک سیستم یک درجه آزادی 8
شکل (2-2) تاریخچه زمانی انرژِی یک قاب خمشی فولادی 5 طبقه با میرایی 5 درصد 11
شکل (2-3) نحوه عملکرد میراگر جرمی، راست – چگونگی وارد شدن نیروی اینرسی میراگر، وسط – حرکت ساختمان به سمت راست، ثابت ماندن جرم و جمع وکشیده شدن فنرها، چپ – حرکت ساختمان به سمت چپ، ثابت ماندن جرم و جمع وکشیده شدن فنرها 30
شکل (2-4) میراگر مایع تنظیم شده ستونی در برج ملینیوم 31
شکل (2-5) میراگر مایع تلاطمی 32
شکل (2-6) میراگر ویسکوز به همراه جزئیات آن 33
شکل (2-7) حلقه کامل انرژی تلفشده برای میرایی ویسکوز 35
شکل (2-8) میراگر تسلیمی مثلثی شکل (TADAS) و منحنی پسماند آن 36
شکل (2-9) میراگر تسلیمی X-شکل(ADAS) 36
شکل (2-10) سیستم بادبند شکلپذیر 37
شکل (2-11) میراگرهای تسلیمی در بادبندهای هممحور 37
شکل (2-12) منحنیهای تنش و کرنش و جزییات انتقال حرارت برای اصطلاحاً رفتار فوق الاستیک 39
شکل (2-13) منحنیهای تنش و کرنش و جزییات انتقال انرژی برای حالت میرایی هیسترزیس فلز ترد 39
شکل (2-14) حلقههای هیسترزیس برای میراگرهای آلیاژی با تغییر شکل حافظهای a) رفتار فوق الاستیک SMA و b) میرایی هیسترزیس فلز ترد 40
شکل (2-15) حلقههای پسماند انواع میراییها 41
شکل (2-16) میراگر ویسکوالاستیک 42
شکل (2-17) منحنی پسماند میراگر ویسکوالاستیک 44
شکل (2-18) ضریب افزایش دینامیکی برحسب فرکانس بار وارده به فرکانس طبیعی سیستم مدلسازی 46
شکل (2-19) مدل تحلیلی ماکسول برای مواد ویسکوالاستیک 47
شکل (2-20) مدل تحلیلی کلوین برای مواد ویسکوالاستیک 47
شکل (3-1) مشخصات مقاطع قاب 4 طبقه 57
شکل (3-2) مشخصات مقاطع قاب 8 طبقه 57
شکل (3-3) مشخصات قاب 12 طبقه 58
شکل (3-4) جانمایی میراگر در قاب 8 طبقه 59
شکل (3-5) بارگذاری و باربرداری یک المان غیرخطی 63
شکل (3-6) تغییرات انرژی برای مسیرهای شکل (3-5) 64
شکل (3-7) نمودار مدول ذخیره برشی برحسب فرکانس. 66
شکل (3-8) نمودار مدول اتلاف برشی برحسب فرکانس. 66
شکل (3-9) ابعاد و اندازه ساختمان مورد آزمایش 68
شکل (3-10) منحنی هیسترزیس میراگر ویسکوالاستیک تحت زلزله السنترو 69
شکل (3-11) منحنی هیسترزیس حاصل از مدلسازی در Perform3D 70
شکل (4-1) نتایج تغییر مکان نسبی طبقات در قاب 4 طبقه تحت رکوردهای حوزه دور بدون میراگر 74
شکل (4-2) نتایج تغییر مکان نسبی طبقات در قاب 4 طبقه تحت رکوردهای حوزه دور با میراگر 74
شکل (4-3) نتایج تغییر مکان نسبی طبقات در قاب 4 طبقه تحت رکوردهای حوزه نزدیک بدون میراگر 75
شکل (4-4) نتایج تغییر مکان نسبی طبقات در قاب 4 طبقه تحت رکوردهای حوزه نزدیک با میراگر 75
شکل (4-5) نتایج تغییر مکان نسبی طبقات در قاب 8 طبقه تحت رکوردهای حوزه دور بدون میراگر 76
شکل (4-6) نتایج تغییر مکان نسبی طبقات در قاب 8 طبقه تحت رکوردهای حوزه دور با میراگر 76
شکل (4-7) نتایج تغییر مکان نسبی طبقات در قاب 8 طبقه تحت رکوردهای حوزه نزدیک بدون میراگر 77
شکل (4-8) نتایج تغییر مکان نسبی طبقات در قاب 8 طبقه تحت رکوردهای حوزه نزدیک با میراگر 77
شکل (4-9) نتایج تغییر مکان نسبی طبقات در قاب 12 طبقه تحت رکوردهای حوزه دور بدون میراگر 78
شکل (4-10) نتایج تغییر مکان نسبی طبقات در قاب 12 طبقه تحت رکوردهای حوزه دور با میراگر 78
شکل (4-11) نتایج تغییر مکان نسبی طبقات در قاب 12 طبقه تحت رکوردهای حوزه نزدیک بدون میراگر 79
شکل (4-12) نتایج تغییر مکان نسبی طبقات در قاب 12 طبقه تحت رکوردهای حوزه نزدیک با میراگر 79
شکل (4-13) نتایج میانگین تغییرمکان نسبی طبقات در قاب 4 طبقه تحت رکوردهای حوزه دور و نزدیک 80
شکل (4-14) نتایج میانگین تغییرمکان نسبی طبقات در قاب 8 طبقه تحت رکوردهای حوزه دور و نزدیک 80
شکل (4-15) نتایج میانگین تغییرمکان نسبی طبقات در قاب 12 طبقه تحت رکوردهای حوزه دور و نزدیک 81
شکل (4-16) قاب 4 طبقه تحت رکورد دور لندرز بدون میراگر 82
شکل (4-17) قاب 4 طبقه تحت رکورد دور لندرز با میراگر 82
شکل (4-18) قاب 4 طبقه تحت رکورد نزدیک لندرز بدون میراگر 82
شکل (4-19) قاب 4 طبقه تحت رکورد نزدیک لندرز با میراگر 82
شکل (4-20) قاب 8 طبقه تحت رکورد دور لندرز بدون میراگر 83
شکل (4-21) قاب 8 طبقه تحت رکورد دور لندرز با میراگر 83
شکل (4-22) قاب 8 طبقه تحت رکورد نزدیک لندرز بدون میراگر 83
شکل (4-23) قاب 8 طبقه تحت رکورد نزدیک لندرز با میراگر 83
شکل (4-24) قاب 12 طبقه تحت رکورد دور لندرز بدون میراگر 84
شکل (4-25) قاب 12 طبقه تحت رکورد دور لندرز با میراگر 84
شکل (4-26) قاب 12 طبقه تحت رکورد نزدیک لندرز بدون میراگر 84
شکل (4-27) قاب 12 طبقه تحت رکورد نزدیک لندرز با میراگر 84
شکل (4-28) قاب 4 طبقه تحت رکورد دور طبس بدون میراگر 85
شکل (4-29) قاب 4 طبقه تحت رکورد دور طبس با میراگر 85
شکل (4-30) قاب 4 طبقه تحت رکورد نزدیک طبس بدون میراگر 85
شکل (4-31) قاب 4 طبقه تحت رکورد نزدیک طبس با میراگر 85
شکل (4-32) قاب 8 طبقه تحت رکورد دور طبس بدون میراگر 86
شکل (4-33) قاب 8 طبقه تحت رکورد دور طبس با میراگر 86
شکل (4-34) قاب 8 طبقه تحت رکورد نزدیک طبس بدون میراگر 86
شکل (4-3) قاب 8 طبقه تحت رکورد نزدیک طبس با میراگر 86
شکل (4-36) قاب 12 طبقه تحت رکورد دور طبس بدون میراگر 87
شکل (4-37) قاب 12 طبقه تحت رکورد دور طبس با میراگر 87
شکل (4-38) قاب 12 طبقه تحت رکورد نزدیک طبس بدون میراگر 87
شکل (4-39) قاب 12 طبقه تحت رکورد نزدیک طبس با میراگر 87
شکل (4-40) انرژی هیسترزیس وارد بر قاب 4 طبقه تحت رکوردهای حوزه دور، دردوحالت با و بدون میراگر 88
شکل (4-41) انرژی هیسترزیس وارد بر قاب 4 طبقه تحت رکوردهای حوزه نزدیک، در دو حالت با و بدون میراگر 88
شکل (4-42) انرژی هیسترزیس وارد بر قاب 8 طبقه تحت رکوردهای حوزه دور، در دو حالت با و بدون میراگر 89
شکل (4-43) انرژی هیسترزیس وارد بر قاب 8 طبقه تحت رکوردهای حوزه نزدیک، در دو حالت با و بدون میراگر 89
شکل (4-44) انرژی هیسترزیس وارد بر قاب 12 طبقه تحت رکوردهای حوزه دور، در دو حالت با و بدون میراگر 90
شکل (4-45) انرژی هیسترزیس وارد بر قاب 12 طبقه تحت رکوردهای حوزه نزدیک، در دو حالت با و بدون میراگر 90
شکل (4-46) میانگین انرژی هیسترزیس وارد بر قابها تحت رکوردهای حوزه دور و نزدیک، در دو حالت با و بدون میراگر 91
شکل (4-47) نمودار انرژی باقیمانده در قاب 4 طبقه تحت رکوردهای حوزه دور، دردوحالت با و بدون میراگر 92
شکل (4-48) نمودار انرژی باقیمانده در قاب 4 طبقه تحت رکوردهای حوزه نزدیک، در دو حالت با و بدون میراگر 92
شکل (4-49) نمودار انرژی باقیمانده در قاب 8 طبقه تحت رکوردهای حوزه دور، در دو حالت با و بدون میراگر 93
شکل (4-50) نمودار انرژی باقیمانده در قاب 8 طبقه تحت رکوردهای حوزه نزدیک، در دو حالت با و بدون میراگر 93
شکل (4-51) نمودار انرژی باقیمانده در قاب 12 طبقه تحت رکوردهای حوزه دور، در دو حالت با و بدون میراگر 94
شکل (4-52) نمودار انرژی باقیمانده در قاب 12 طبقه تحت رکوردهای حوزه نزدیک، در دو حالت با و بدون میراگر 94
شکل (4-53) میانگین انرژی باقیمانده در قابها تحت رکوردهای حوزه دور و نزدیک، در دو حالت با و بدون میراگر 95
شکل (4-54) نسبت میانگین انرژی هیسترزیس به انرژی ورودی در قابها تحت رکوردهای حوزه دور و نزدیک 96
شکل (4-55) نتایج توزیع خسارت در طبقات قاب 4 طبقه تحت رکوردهای حوزه دور در حالت بدون میراگر 97
شکل (4-56) نتایج توزیع خسارت در طبقات قاب 4 طبقه تحت رکوردهای حوزه دور در حالت با میراگر 97
شکل (4-57) نتایج توزیع خسارت در طبقات قاب 4 طبقه تحت رکوردهای حوزه نزدیک در حالت بدون میراگر 98
شکل (4-58) نتایج توزیع خسارت در طبقات قاب 4 طبقه تحت رکوردهای حوزه نزدیک در حالت با میراگر 98
شکل (4-59) نتایج توزیع خسارت در طبقات قاب 8 طبقه تحت رکوردهای حوزه دور در حالت بدون میراگر 99
شکل (4-60) نتایج توزیع خسارت در طبقات قاب 8 طبقه تحت رکوردهای حوزه دور در حالت با میراگر 99
شکل (4-61) نتایج توزیع خسارت در طبقات قاب 8 طبقه تحت رکوردهای حوزه نزدیک در حالت بدون میراگر 100
شکل (4-62) نتایج توزیع خسارت در طبقات قاب 8 طبقه تحت رکوردهای حوزه نزدیک در حالت با میراگر 100
شکل (4-63) نتایج توزیع خسارت در طبقات قاب 12 طبقه تحت رکوردهای حوزه دور در حالت بدون میراگر 101
شکل (4-64) نتایج توزیع خسارت در طبقات قاب 12 طبقه تحت رکوردهای حوزه دور در حالت با میراگر 101
شکل (4-65) نتایج توزیع خسارت در طبقات قاب 12 طبقه تحت رکوردهای حوزه نزدیک در حالت بدون میراگر 102
شکل (4-66) نتایج توزیع خسارت در طبقات قاب 12 طبقه تحت رکوردهای حوزه نزدیک در حالت با میراگر 102
شکل (4-67) نتایج میانگین توزیع خسارت در قاب 4 طبقه تحت رکوردهای حوزه دور و نزدیک 103
شکل (4-68) نتایج میانگین توزیع خسارت در قاب 8 طبقه تحت رکوردهای حوزه دور و نزدیک 103
شکل (4-69) نتایج میانگین توزیع خسارت در قاب 12 طبقه تحت رکوردهای حوزه دور و نزدیک 104
شکل (4-70) نتایج میانگین خسارت کلی در قابهای موردبررسی تحت رکوردهای حوزه دور و نزدیک 105
شکل (4-71) برش پایه قاب 4طبقه تحت رکوردهای حوزه دور در دو حالت با و بدون میراگر (تن) 106
شکل (4-72) برش پایه قاب 4طبقه تحت رکوردهای حوزه نزدیک در دو حالت با و بدون میراگر (تن) 106
شکل (4-73) برش پایه قاب 8 طبقه تحت رکوردهای حوزه دور در دو حالت با و بدون میراگر (تن) 107
شکل (4-74) برش پایه قاب 8 طبقه تحت رکوردهای حوزه نزدیک در دو حالت با و بدون میراگر (تن) 107
شکل (4-75) برش پایه قاب 12 طبقه تحت رکوردهای حوزه دور در دو حالت با و بدون میراگر (تن) 108
شکل (4-76) برش پایه قاب 12 طبقه تحت رکوردهای حوزه نزدیک در دو حالت با و بدون میراگر (تن) 108
شکل (4-77) میانگین برش پایه قابهای موردبررسی، تحت رکوردهای حوزه دور و نزدیک در دو حالت با و بدون میراگر (تن) 109
فهرست جدولها
جدول (2-1) خواص یک میراگر ویسکوالاستیک نمونه 45
جدول (2-2) مقادیر نسبت میرایی و تغییرات فرکانس منطبق با آن برای یک میراگر ویسکوالاستیک خاص با فرض میرایی متناسب 48
جدول (3-1) مشخصات رکورد زلزلههای حوزه نزدیک مورد استفاده در این تحقیق 60
جدول (3-2) مشخصات رکورد زلزلههای حوزه دور مورد استفاده در این تحقیق 60
جدول (3-3) اطلاعات سختی و میرایی میراگر ویسکوالاستیک در قاب 4 طبقه 67
جدول (3-4) اطلاعات سختی و میرایی میراگر ویسکوالاستیک در قاب 8 طبقه 67
جدول (3-5) اطلاعات سختی و میرایی میراگر ویسکوالاستیک در قاب 12 طبقه 67
جدول (3-6) مشخصات مقاطع المانهای مورداستفاده 68
جدول (3-7) ابعاد و اندازه میراگر ویسکوالاستیک 69
جدول (4-1) جدول حالات مختلف بررسی قابها در این پژوهش 73
جدول (4-2) مقادیر جابجایی بام برحسب سانتیمتر برای رکوردهای حوزه دور 110
جدول (4-3) مقادیر جابجایی بام برحسب سانتیمتر برای رکوردهای حوزه نزدیک 110
فهرست نمادها
انرژی ورودی……………………………
انرژی جنبشی …………………………..
انرژی میرایی…………………………..
انرژی کرنشی الاستیک……………………..
انرژی هیسترتیک…………………………
شاخص خسارت پارک انگ…………………..
میراگر ویسکوالاستیک…………………… VED
مدول ذخیره برشی ……………………….
مدول اتلاف برشی…………………………
مدول مرکب برشی…………………………
سختی میراگر……………………………
میرایی میراگر………………………….
نسبت میرایی معادل ……………………..
مدول اتلاف………………………………
سالانه در جهان، بهطور متوسط 10000 نفر در اثر زلزله میمیرند (شکل (1-1)). بررسیهای سازمان یونسکو نشان میدهد که خسارت مالی ناشی از زلزله از سال 1926 تا 1950 میلادی، چیزی در حدود 10 میلیارد دلار بوده است. در این فاصله زمانی در آسیای میانه دو شهر و 200 روستا تخریب شدند. از آن موقع به بعد نیز چندین شهر ازجمله عشقآباد (1948)، اقادیر (1960)، اسکو پیه (1963)، ماناگوا (1972)، گمونا و تانگ شان (1976)، مکزیکوسیتی (1985)، اسپیتاکا (1988)، کوبه (1995)، شهرهایی در ترکیه و تایوان (1999) و صدها روستا در اثر زمینلرزه با خاک یکسان شدند. نوشتههای تاریخی گواه نگرانی دیرینه بشر از خطرات ناشی از زمینلرزه میباشند[1]. به همین دلیل است که انسان درصدد مقابله با این پدیده طبیعی میباشد که در این راه پیشرفتهای چشمگیری نیز کرده است. اما بااینوجود به دلیل پیچیدگی بیشازحد این پدیده کماکان نتوانسته چه ازلحاظ جانی و چه ازلحاظ مادی به ایمنی و تضمین کامل برسد.
امروزه بهخوبی مشخصشده است که سازههای طراحیشده بر اساس ضوابط آییننامههای موجود، در برابر زلزلههای شدید، متحمل خسارات سنگین خواهند شد. ولی بااینوجود هنوز برخی ضوابط طراحی لرزهای ( خصوصاً در طراحی اولیه سازهها ) بر پایه تحلیلهای ارتجاعی و استفاده از یک نیروی استاتیکی معادل با زلزله بناشدهاند[2و3].
بارهای لرزهای اصولاً ماهیتی قراردادی و اعتباری داشته و نیروهای طراحی لرزهای پیشنهادشده توسط آییننامهها عموماً بهمراتب کوچکتر از نیروهایی میباشند که در هنگام زلزله به سازه وارد میگردند. نیروهای بکار گرفتهشده بهوسیله زلزله به ویژگیهای الاستیک و پلاستیک سازه بستگی دارند.
پژوهشهای مختلف نشان میدهند که در پاسخ لرزهای سازهها، پارامترهای دیگری نیز دخیل میباشند و صرف بحث نیرو – تغییر مکان در ارتجاعی یا حتی الاستوپلاستیک کامل دوخطی نمیتواند توجیهکننده تمامی رفتارهای لرزهای سازه باشد. درنتیجه پژوهشگران، به دنبال پیشنهاد روشی نوین در طرح لرزهای سازهها میباشند. در همین راستا و طی دو دهه اخیر بحث انرژی بسیار موردتوجه قرارگرفته است. زیرا با پیشرفتهای حاصلشده در این روش، بسیاری از پارامترها و رفتارهای مطرح در طرح لرزهای سازهها قابلیت توجیه و اعمال در فرآیند طراحی را یافتهاند. بااینوجود، هنوز هم ناشناختهها و کاستیهای فراوانی درروش انرژی وجود دارد که مانع از ارائه آن بهعنوان یک روش جامع در قالب آییننامهای مطمئن گشته است. با توجه به تحقیقات و پژوهشهای گستردهای که در حال حاضر روی این موضوع در سطح جهان صورت میگیرد، آتیهای روشن برای آن پیشبینی میگردد و چهبسا در آیندهای نزدیک، اصول و ضوابط موجود فعلی در آییننامهها با اصول و ضوابط روش انرژی جایگزین گردند.
بامطالعه رفتار ساختمانهایی که به روش مقاومتی طراحیشدهاند و تحت آنالیزهای دینامیکی غیرخطی قرارگرفتهاند میتوان مشاهده کرد که در طراحی بر اساس مقاومت علیرغم توزیع یکنواخت مقاومت در طبقات، این روش دارای ضعفهایی است و نمیتواند روش کاملی برای طراحی ساختمانها باشد و همواره یک تمرکز انرژی و خسارت در یک یا دوطبقه مشاهده میشود. مطالعات نشان میدهد که بررسی سازهها بر اساس مفاهیم انرژی میتواند رفتار سازه را در هنگام زلزله بهتر نشان دهد، ازاینرو در این مطالعه سعی شده که سازه بر اساس مفاهیم انرژی موردبررسی قرار گیرد.
با وقوع زلزله انرژی زیادی به سازه وارد میشود، سازه باید این انرژی را بهصورتهای مختلف جذب و یا تلف کند. اعضای سازه در برابر انرژی زلزله که مقدار قابلتوجهی است، وارد محدوده غیر ارتجاعی میشوند تا با تغییرشکلهای خود بتوانند این انرژی را جذب کنند. با وارد شدن اعضای سازهها به محدوده غیر ارتجاعی، تغییرشکلهای ماندگاری در سازه به وجود میآید که برای ادامه بهرهبرداری از سازه، باید آن اعضایی که بیشازحد تغییر شکل دادهاند یا دیگر قابلیت بهرهبرداری را ندارند را با اعضای جدید جایگزین و یا آنها را تقویت نمود که اجرای این کار دشوار و هزینه آن نیز بالا میباشد. لذا با قرار دادن میراگرها در سازه، این میراگرها با جذب انرژی زلزله از وارد شدن دیگر اجزای سازه به محدوده غیر ارتجاعی جلوگیری به عمل میآورند و درنتیجه بعد از زلزله اجزای مختلف سازه همچنان قابلیت بهرهبرداری خود را حفظ کردهاند و فقط میتوان با بازدید میراگرها در صورت لزوم آنها را تعویض و یا تعمیر نمود.
با توجه به مطالب بیانشده، در این پژوهش به بررسی سازههایی که میراگر، بهعنوان یک روش مقاومسازی، به آنها اضافهشده پرداخته میشود. بدین منظور با انتخاب تعدادی قاب فولادی با سیستم قاب خمشی متوسط که بر اساس ویرایش اول استاندارد 2800[4] طراحی میشوند به بررسی آسیبپذیری لرزهای این قابها، تحت زمینلرزههای مختلف حوزه دور و نزدیک و بر اساس مفاهیم انرژی پرداخته و پارامترهایی همچون خسارت طبقات و قابها، جابجایی نسبی طبقات، برش پایه و جابجایی بام را موردبررسی قرار میدهیم سپس با کنترل مقادیر جابجایی نسبی بر اساس آییننامه، لزوم بهکارگیری روش مقاومسازی جهت کاهش این مقادیر شرح داده می شود. بدین منظور از میراگرهای ویسکوالاستیک جهت کاهش جابجایی نسبی و خسارت وارد برسازه استفاده میشود. یکی از مزایای استفاده از میراگرهای ویسکوالاستیک این است که برای فعال کردن این میراگرها نیاز به تحریک خارجی نیست و برخلاف میراگرهای اصطکاکی که برای کمتر از نیروی لغزش نمیتوانند فعال شوند میراگرهای ویسکوالاستیک در هر زلزلهای عمل کرده و انرژی تلف میکنند و بدین ترتیب از خسارت وارد برسازه میکاهند.
تحقیق حاضر در پنج فصل بهصورت زیر تدوینشده است:
فصل اول شامل مقدمه، ضرورت و اهداف تحقیق و ساختار پایاننامه میباشد.
در فصل دوم، ابتدا به بررسی مفاهیم انرژی پرداخته و در ادامه شاخصهای خسارت معرفیشده و با توجه به، بهکارگیری میراگر بهمنظور مقاومسازی قابهای موردبررسی در این پژوهش، بهمرور کنترلهای لرزهای، بخصوص انواع میراگرهای غیرفعال پرداختهشده است. با توجه به استفاده از میراگر ویسکوالاستیک در این پژوهش، مشخصات دینامیکی این نوع میراگر و روش طراحی آن بهطور مفصل بیان میشود.
فصل سوم به معرفی قابهای فولادی و همچنین شتابنگاشتهای مختلف حوزه دور و نزدیک که بهمنظور تحلیل دینامیکی غیرخطی به روش استاندارد 2800 مقیاس شدهاند، میپردازد. در ادامه نرمافزار Perform-3D معرفی و در انتهای فصل صحت مدلسازی میراگر ویسکوالاستیک در نرمافزار فوق موردبررسی قرار میگیرد.
فصل چهارم با توجه به نتایج بهدستآمده از تحلیل دینامیکی غیرخطی قابها تحت زلزلههای حوزه دور و نزدیک، به بررسی انرژی، خسارت، جابجایی نسبی، برش پایه و جابجایی بام در طبقات و قابها، قبل و بعد از مقاومسازی با میراگر ویسکوالاستیک میپردازد.
فصل پنجم به ارائه خلاصهای از نتایج بهدستآمده پرداخته و پیشنهاداتی برای تحقیقات آتی ارائه میگردد.....
و.....